
O

o ESD-TR-72-147, Vol. 3

•: LIST

DRI Call - T 8Xul
C .' No. i_o\J^L cys,,

MTR-2254, Vol. in

I OS
1 Q HARMONIOUS COOPERATION OF PROCESSES

OPERATING ON A COMMON SET OF DATA, PART 3

by

L. J. LaPadula
D. E. Bell

DECEMBER 1972

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

&**

$

tf ̂
,\0*

<£ tfjtf
\\v- P $&'

Approved for public release;
distribution unlimited.

Project 671A
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

/\D7$"7W4

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby Incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by Implication or otherwise, as In any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

Invention that may In any way be related thereto.

Do not return this copy. Retain or destroy

ESD-TR-72-147, Vol. 3 MTR-2254, Vol. Ill

HARMONIOUS COOPERATION OF PROCESSES
OPERATING ON A COMMON SET OF DATA, PART 3

by

L. J. LaPadula
D. E. Bell

DECEMBER 1972

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR EORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release,
distribution unlimited.

Project 671A
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

FOREWORD

The work described in this report was carried out under the spon-

sorship of the Deputy for Command and Management Systems, Project 671A,

by The MITRE Corporation, Bedford, Massachusetts, under Contract No.

F19628-71-C-0002.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command and Management Systems

11

ABSTRACT

A data-sharing scheduler is defined in terms of finite-state
machine theory. Using the language and concepts of finite-state
machines, we give precise definitions for the notions of "delayed,"
"blocked," "deadlock," "permanent blocking," and "sharing a datum";
these notions and their interrelationships lead to a characterization
of a class of scheduler (unrestricted and nontrivial); a basic theorem
of data sharing is stated and proved, and its implications are explored,
We also give a narrative summary and discussion of the main result of
the work suitable for the system designer or analyst.

iii

ACKNOWLEDGMENT

This document is the third in a series of documents dealing
with data sharing(6»l) produced under Project 671A, Multi-User Data
Base Management.

The material presented herein, in Sections III through VI, will
seem so abstract to the casual reader that he may well have difficulty
imagining what may be the practical significance of the results
obtained. We have attempted to guide the reader to a realization of
the practical significance in the section entitled "Summary"; it is
aimed at the reader who is a system designer or analyst.

By abstracting to the level of essential properties of interest
and by the application of the simplest notions of finite-state
machine theory, we have been able to obtain a very general and power-
ful result. With it we have been able both to evaluate the data-
sharing models of Part 1 of this series(6) and to delineate guidelines
for future investigation of data-sharing models.

We are greatly indebted to Mrs. Judith A. Clapp, MITRE Project
Leader (671A), whose review of our initial draft led to a change in
the definition of a trivial data-sharing scheduler; the resulting
definition is more useful and more meaningful in its relation to real
systems than the definition we had started with. Mrs. Clapp's review
also gave us a number of insights which, we believe, made the final
version more readable and more meaningful.

We are also indebted to Dr. Jonathan K. Millen, MITRE D73, who
critically reviewed both the statement and proof of our Basic Theorem
and suggested a number of interesting properties for future investi-
gation.

iv

TABLE OF CONTENTS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

SECTION VI

APPENDIX

REFERENCES

INTRODUCTION

SUMMARY
PRECIS
CONCLUSIONS

DATA-SHARING SCHEDULERS

BLOCKING AND DELAYS

THE BASIC THEOREM

IMPLICATIONS OF THE THEOREM

A SUMMARY OF COMPLETE SEQUENTIAL MACHINES

Page

1

2
2
6

8

11

18

23

25

27

SECTION I

INTRODUCTION

Most data-sharing models which purport to avoid deadlock,

including the models described in (6) (Part 1 of this series, which

we shall hereinafter refer to as "HC1"), require an entering process

to state which data elements it may use during its run. This require-

ment of prior knowledge seemed to be a logical candidate for weakening

when we began attempting the formulation of a new model. A few ini-

tial failures in this direction suggested that perhaps prior knowledge

of the requirements of a process is necessary to any data-sharing

system which prevents deadlock. It is the intent of this paper to

investigate the necessity of "prior knowledge" rigorously.

The sections of this paper are in the order which we felt would

be most convenient for the majority of readers who may wish to apply

the results reported herein to the practical problems of system

design. We have, for example, presented the main result in narrative

form together with some of its practical implications in the next

section. The mathematical and developmental aspects of the work are

then presented in subsequent sections.

The language of complete sequential machines was chosen to pro-

vide a rigorous framework for the investigation. Sections III through

VI inclusive, assuming the material of the Appendix, develop concisely

the relevant concepts involved in data sharing.

SECTION II

SUMMARY

PRECIS

We shall first, in narrative form, describe the main concepts

which we have developed rigorously in the remainder of this paper.

Then we shall state the main result of this paper. Finally, we shall

briefly discuss the implications of the main result from the point of

view of the system designer.

We consider the management of access to data in a system to be

controlled by a Scheduler which is embedded in the system. The data

in the data base are of two types with respect to the Scheduler: the

data which may at some time in some mode of use be non-shareable

simultaneously by two or more users (the critical data) and the data

which are always shareable simultaneously by two or more users (the

noncritical data). The function of the Scheduler is to avoid situa-

tions wherein critical data are being inappropriately shared.

Schedulers will be categorized broadly in two major ways in this

paper. The first categorization involves the manner in which the data

base is shared. A Scheduler is said to be nontrivial if it allows

two or more users to have simultaneous access to critical data in the

data base (perhaps two different data elements). On the other hand,

a Scheduler is trivial if no more than one user at a time can have

access to any elements in the critical data base. In a certain sense,

a trivial Scheduler acts as a queue for the elements of the data base

which cannot always be shared (i.e., as a queue for the critical data).

Two examples may illustrate what we mean to include in the desig-

nation "trivial Scheduler." If a Scheduler allows only one user access

to the entire data base (one user at a time), no deadlock can occur

and integrity of the data base can be preserved. In this case, the

Scheduler acts as a queue of processes waiting for access to the entire

data base: a request for access to a datum is granted if no other

process has access to any element of the data base and is denied if

any other process has access to some element of the data base. Sup-

pose instead that a Scheduler always grants requests for access to

data except for one datum, say d'; a request for access to d' is

granted only when no other process has access to d'. Then, deadlock

cannot occur since only requests for d' are ever denied; also, by

assumption, simultaneous access to any element except d' will not

compromise the integrity of the data base. In this case, the Scheduler

acts as a queue with respect to d' and as a green light for the rest

of the data base. This example is easily generalized so that D' con-

tains a subset of the data base and only one process at a time may

have access to elements in D'.

The second categorization of Schedulers concerns "prior knowledge"

of the users' needs. In the models of HC1, for example, a process

must state its claim list before it begins its run; for the remainder

of the run, the system and that process share the knowledge of which

data can be accessed and in what mode. This claim list is prior

knowledge of the process's data needs during the run. Requests for

data that are not properly claimed on the claim list are illegal and

would be considered errors. In other models, an entering process

can be required to supply information about its data needs and about

the order in which the data will be used. In every case, the limiting

values on a process's access capabilities, as a list of legal requests

for data, would be considered prior knowledge. In this paper, we

have used a more general concept which is explained below.

A Scheduler is said to be unrestricted if every request for

access to any datum by any user is legal at any time. A Scheduler

is restricted if some request for access to some datum by some

user is illegal at some time. A restricted Scheduler has prior

knowledge of the users' actions in that there is at every instant a

list of acceptable (legal) requests that each user can make. The

lists need not remain static as in the models of HC1; the only

requirement is that there be such lists. In a real system, a user

will know his options at each stage of his run and will thus be aware

of the constraints placed on him. Notice, however, that unrestricted

does not mean that every request for access will immediately be

granted; indeed, we allow that an unrestricted Scheduler may deny a

request for access to some datum by some user.

The forms that restricted Schedulers can take are many, as these

examples will indicate. The models of HC1 are typical examples of

restricted Schedulers. Another interesting example can be formulated

in terms of the "name your elements in order" strategy for access.

In this strategy all accessible elements are assumed to be ordered

(i.e., there is a first, second, third, ...). A rule imposed on a

process (user) is that it must always ask for access to elements in

ascending order of their arrangement; it need not ask for elements

which are contiguous in the ordering. The rule simply says that if

a process is going to ask for an element b and a is the latest element

it has acquired access to, then b must follow a in the ordering of

the elements. If we assume that no elements may be shared and that

the rule is enforced, then we have an example of a system which does

not have a deadlock state and which does not share a datum; clearly,

however, the Scheduler which manages this is restricted since a pro-

cess having b may not legally ask for a, where a precedes b in the

ordering of the elements.

Intuitively, an optimal Scheduler would be nontrivial (to effect

as much "sharing" as possible) and unrestricted (to rid the users of

the necessity of using some version of claims lists). However, the

Basic Theorem stated and proved in Section V says essentially that

"an unrestricted, nontrivial data-sharing Scheduler has a
deadlock state or a state in which it shares a critical
(unshareable) datum."

The major implications of the Basic Theorem are that an unrestricted,

nontrivial, deadlock-free data-sharing system cannot guarantee integrity

of the data base and that an unrestricted, nontrivial data-sharing system

that does guarantee integrity of the data base cannot be deadlock-free.

In other words, a design for a data-sharing system which must prevent

deadlocks while guaranteeing integrity of the data base must involve

either a restricted Scheduler or a trivial Scheduler.

CONCLUSIONS

We have arrived at two basic sets of conclusions, one having to

do with data-sharing models and the other having to do with future

investigations in this area.

The Basic Theorem of this paper indicates that in investigating

strategies for achieving harmonious cooperation one must impose some

restrictions on the users of the system. The particular form the

restrictions take are of course important to the system designer since

he will certainly wish to optimize one or more parameters and since

different sets of restrictions could cause the data-sharing systems

to appear quite different to the users.

Our conclusions about data-sharing models center around our

evaluation of the generality of the models in HC1. The Basic Theorem

further indicates that the models of HC1 are essentially representa-

tive of the entire family of models which preserve integrity of the

data base and which prevent deadlock and permanent blocking. The

theorem indicates also that other significant models in the family

are to be found by investigation of the conditions which make the

models of HC1 restricted schedulers—to wit, investigation of

alternatives to static declaration by a process of its claim lists.

Modifications to the strategies of HC1 or alternate strategies not

having to do with this aspect of the model do not essentially change

the model but may affect factors such as efficiency.

With regard to future work in this field, we believe that it will

be fruitful to pursue the theoretical investigation begun in this

paper—this belief seems justified in light of the-significant result

obtained from our simple use of basic finite-state machine theory.

An obvious extension of this work would be the development of a char-

acterization of a system with respect to permanent blocking, similar

to the characterization presented herein with respect to deadlock.

SECTION III

DATA-SHARING SCHEDULERS

A number of data-sharing schemes (see (6, 4)) can be pictured

as involving a black box for processing requests for data. Such a

black box will typically receive as inputs

(1) requests for access to a datum in a particular mode (for

example, write or read-only) and

(2) notifications that a particular datum has been returned to

the data base.

The data-sharing scheme provides a method for the black box to process

a request or a notification. The first capability is usually to

determine whether the input signal is "legal." For example, if a

process is forbidden by the scheme to request datum s in a write

mode, a request from P for write access to datum s would normally

cause the system to label the request an error. If an input is

acceptable, it is processed. An acceptable request input produces

either a granting response or a denying response. An acceptable

datum-release input will generally cause internal bookkeeping; some-

times a release of a datum will cause the system to grant a request

that had been denied earlier. For our purposes, another concept

we must deal with is the idea that some record must be kept of the

status of each datum and of each process: if this type of record is

not kept, an actual data-sharing system could become hopelessly entangled.

8

The discussion in the preceding paragraph will be taken as

justification for the definition of a data-sharing scheduler below.

The material which follows uses the definitions found in the

Appendix.

Let P = {P. , . . . , P } and S = {s. s } be finite
— 1 n — 1 m

sets. An element of P_ will be called a "process" and an element of

S^ will be called a "datum". A complete sequential machine

M = (K, E, A, X, 6) is a data-sharing scheduler for (P, S) if

(1) I D A U R, where

(a) A is a set whose elements are called "requests" and

(b) R = {r(a): a e A} is a set whose elements are called

"releases";

(2) A D {0, error} U (G(a): a e A} U (D(a) : a e A};

(3) there is a unique state qn e K such that any q e K is

of the form q = <5(qn, J) for some tape J; and

(4) any state q e K specifies which processes have been

granted access to which data and which processes have been

denied access to some datum and have not yet been granted

access in this state—that is, every state q records the

current data allocation.

The elements of A are to be understood as requests for access

to data. We shall denote by "A.," the set of all requests for

datum s by process P . In other words, A is the disjoint

union of all the sets A where 1 < i < n and 1 < j < m, and

any element of A., will be understood to be a request by P. for

some (unspecified) kind of access to datum s.. "a-.i" will be used

to denote an element of A . The elements of R are to be under-

stood as notifications of the release of a datum: r(a..) is the

notification that P relinquishes access to datum s. as specified

in request a,..

The output G(a..) is the granting of request a..; D(a..) is

denying it. The output error indicates an inappropriate input was

supplied: for example, we would normally expect ^(qn» r(a,,)) = error

for every request a..- The output 0 is a go-ahead signal which

is used when an input r(a) yields neither an error output nor a

G(a) output.

With this precise definition of a data-sharing scheduler in

hand, we are now in a position to begin a rigorous investigation of

the major problems involved in data-sharing—blocking, deadlock, and

integrity of the data base.

The specification of a data-sharing scheduler does not take into
account the action taken by the system when a request is denied.
In particular, no assumption is made about whether a process is
queued following a denial of its request.

10

SECTION IV

BLOCKING AND DELAYS

One of the problems that a data-sharing scheme must deal with

is permanent blocking. Permanent blocking of a process P is a

situation where it is possible for P to be "temporarily" denied

access to some datum repeatedly for an indefinite period of time.

Permanent blocking in a resource-sharing situation is discussed by

Holt, and examples of permanent blocking in a data-sharing situa-

tion are given in Section IV of HC1 (on pages 32 and 35). One solu-

tion to the problem of permanent blocking for data sharing is given

in the second and third models of HC1. In essence, the solution's

strategy is to close the system to entering processes when it first

appears that some process P may be permanently blocked. The system

then becomes internally identical to a system where no processes

can enter. If each process terminates in a finite amount of time and

if no processes can enter the system, then permanent blocking cannot

occur by Theorem 11 of HC1. Hence the strategy used in HC1 guarantees

that if a process P is given special attention to prevent it from

becoming permanently blocked, then in some (unspecified) finite

amount of time P will be able to proceed. The remainder of this

section will provide both rigorous definitions of the concepts involved

here and a brief analysis of their interrelations.

11

Let M«(K, E, A, A, 6) be a data-sharing scheduler for (P_, S)

For q e K, we say that P is waiting for access to s. at q

via a (or briefly, "P is waiting for s. at q") if there is

a state q1 and a tape J such that

(1) A(q\ a) = D(a);

(2) 6(q', a±.J) = q; and

(3) A(q', a..J) does not contain G(a,.).

Heuristically, P is waiting for s at q = <5(q', a J) if P

was denied access to s. at q' and access has not yet been granted

to P .

The intuitive idea of permanent blocking is that a process P

is waiting for s. at q and that P could be waiting after any

number of inputs (all "legal" in the sense that no one of them

elicits an error output) has been processed. Our definition of per-

manent blocking will rely on the definitions below of "legal tapes"

and of "k-blocked."

An input tape J will be called legal for q e K if

error i A(q, J). We say that P is k-blocked at q via a if

P. is waiting for s at q via a and there is an input tape

J of length k which is legal for q such that G(a) ^A(q, J).

That is, P. is k-blocked at q via a., if it is possible for

k "legal" inputs to be processed without granting the request a...

Clearly our definition of permanently blocked must imply k-blocked

for every k.

12

We say that P Is permanently blocked at q if P Is

waiting for s. at q via some a and P. is k-blocked via

a., for all k > 0. An equivalent statement of permanent blocking

is given in Theorem 1.

Theorem 1: P is permanently blocked at q if and only if P

is waiting for s. at q via some a., and there is
J iJ

k k
a sequence {I : 0 < k and I e E} such that

G(a) i X(q, I ... I) and I ... I is legal for

q for every m > 0.

Proof: The condition is sufficient. To show P is k-blocked

at q via a , it suffices to consider the legal

tape I ... I .

Conversely, suppose P is permanently blocked at q

via a... For s > 0, let A denote the set of legal ij s

tapes J of length s such that G(a) t X(q, J).

Since P. is permanently blocked via a.., each

A ^ if for s > 0. Also, if s > 1 and J = J*IeA
s s

where I e E, then J* is a legal tape of length s - 1

such that G(a) i X(q, J*): X(q, J*) is a subset of

A(q, J). Hence every element J of A (s > 1) is of

the form J = J*I where J* e A , and I e E. Since
s-1

E is finite, A ,n is finite provided A is finite.
s+1 s

Moreover, A is finite as a subset of E. Hence every

A is finite. Define F : A •+?(.&.,) (the "power
s s s s+1

13

set" of A ,n—that is, the set of all subsets of A .„)
s+1 s+1

by F (J) = {JI: JI is a legal tape for q and s

GCa^) 4Kq, JI)}.

The sets {A : 0 < s} and {F : 0 < s} have the
s s

property that for any k > 0 there is a sequence

{J(^, ..., J•] such that J(k) e A for 0 < s < k
1 k. s s =

(k) Ckl
and J_' e F (Jv ') for 0 < s < k. By the Kbnig

S T 1 s s

Graph Theorem, this property implies that there is a

sequence {J : 0 < s} such that J e A and
s s s

J - e F (J) for all s > 0. Set J.. = I and write

s+1 k
J ... = J I for all s > 1. The sequence {I : 0 < k} s+1 s

of inputs establishes that the second condition of the

theorem is necessary.

An interpretation of this theorem is that P is permanently

blocked at q if it is possible for some sequence of legal inputs

never to grant P. access to an s. for which P is waiting at

q. That is to say, the theorem shows that the rigorous definition

of permanent blocking given in this section conforms with the usual

intuitive notion of permanent blocking.

As mentioned before, the strategy for avoiding permanent blocking

in the models of HC1 alters the rules of the game so that a process

P in danger of permanent blockage is guaranteed that in some finite

amount of time its denied request will be granted. Moreover, if one

knew a maximum number of data transactions left in the run of each

14

other running process, one could calculate the maximum length of

"time" (measured in legal data transactions - a request or release)

that P would have to wait before his request would be granted.

This concept of the "maximum wait time" has some interesting relations

with the various concepts of blocking.

We will say that P. is k-delayed at q via a if

(1) P. is waiting for s, at q via a,.;
i j lj

(2) for all legal tapes J of length k, G(a) e A(q, J); and

(3) there is a legal tape J* of length k - 1 such that

G(a) i X(q, J*).

Thus, P is k-delayed if it has been denied access to some s. via

some a.. and if it is possible that it will have to wait for k
ij

legal inputs to be processed before it gains access but not possible

that it will have to wait for more than k legal inputs to be pro-

cessed. An immediate result is the following theorem.

Theorem 2: If P is k-delayed at q via a for k > 1 and

I E Z such that A(q, I) 4- error or G(a ,) , then

P is m-delayed at 6(q, I) via a for some

1 < m < k.

Proof; P is still waiting for s at 6(q, I) via a .

Moreover, for any legal input tape J of length k - 1,

IJ is a legal tape of length k so that

G(a) e X(q, IJ) = X(6(q, I), J). Suppose J* is the

longest legal tape such that GC3^) i *(<5(q, I), J*) •

15

Then the length of J* = n < k - 1. Hence for any legal

tape J of length m = n + 1, G(a..) e A(6(q, I), J)

by the maximality of the length of J*. Furthermore,

P. is m-delayed at 6(q, I) via a . where

m = n + 1 < k-1 < k.

The precise relation between permanent blocking and k-delays is

shown in the next theorem.

Theorem 3; P. is permanently blocked at q via a if and only

if P is waiting for s at q via a . and P is

not k-delayed via a.. for any k > 0.

Proof: Suppose P. is waiting for s at q and P is not

k-delayed for any k > 0. Then for each k > 0, either

i) there is a legal tape J of length k such that

G(a±j) i X(q, J), or

ii) for all legal tapes J* of length k-1,

G(a) £ X(q, J*).

Let k = 1. Then ii) cannot hold since it must be true

that G(a) i A(q, <J>) . Thus i) holds for k-1: there

is a legal tape J of length 1 such that G(a .) i A(q, J).

Let k = 2. Then ii) cannot hold since we have just

established the existence of a tape which contradicts

ii) for k = 2. Proceeding inductively we find that for

every k > 0 there is a legal tape J of length k

such that G(a .) I X(q, J). Therefore, P. is k-blocked

for every k > 0 and is therefore permanently blocked.

16

Conversely, assume that either P is not waiting for

s, at q via a or P is k-delayed via a for

some k > 0. If P is not waiting for s, at q via

a ., then P. is clearly not permanently blocked at q

via a., .. If P. is k-delayed via a. . for some k > 0,
ij 1 ij

then for every legal tape J of length k G(a) e A(q, J)

and therefore P is not permanently blocked since it

is not k-blocked for this particular k.

The corollary below follows directly from Theorem 3.

Corollary: If P is k-delayed at q via a , then P is not

permanently blocked at q via a...

Our last result involving delays and blocking is Theorem A below.

Theorem 4: If P. is k-delayed at q via a . for some k > 1,

then P is (k - 1)-blocked at q via a...

Proof: That P. is k-delayed implies that there is a legal tape

J of length k - 1 such that GCa±i) i x(l> J)> which

by definition means that P is (k - 1)-blocked.

17

SECTION V

THE BASIC THEOREM

In this section we formally introduce the concepts of deadlock

and of integrity of the data base. The section ends with the Basic

Theorem which relates these concepts with the type of data-sharing

scheduler necessary to avoid deadlock and to preserve the integrity

of the data base.

We begin by making explicit the concept of "current access."

For a state q, we say Pj has access to s. at q via a„ if
-i J a 1 j

there is a state q', an input I, and a tape J with r(a..)

not in J such that

(1) X(q*. I) = G(a) and

(2) 6(q', IJ) = q.

Heuristically, P. has access to s at q if P was granted

access at state q' and P has not relinquished access on some

path from 5(q', I) to q. Note that we could have I = a or

P. might have made the request a . for s at some predecessor

state of q'.

We are naturally concerned with the interaction of processes

operating on a common set of data. If S • {s,, ..., s } is a finite
— I m

set of elements (intuitively, the data of the data base), we shall be

interested in the nontrivial or critical portion of S_. We will

define C^ C ^ such that C includes only those elements of S_

18

which may at some time (that is, in some state) be considered non-

shareable; S^ - C^ then includes only those elements which may always

be shared. Set C = {s : there is a state q(j) e K and an integer

i(j) such that

(1) p
1/-->

ftas access to s. at q(j), and

(2) A(q(J), a) = D(a.,) for every i ^ i(j) and every

a.. E A. .}.

We must next define deadlock in the present context. Deadlock

is defined here in precisely the expected manner. A state q is a

deadlock state if there are sets {P. , ..., P } of processes and
11 k

{s. , ..., s. } of data such that each P. has access to s. at
Jl Jk t Jt

q and each P. is waiting for s. at q (where s. is
1t 3t+l Jk+1

defined to be s .).
Jl

Note that if q is a deadlock state then each P involved

is permanently blocked at q. On the other hand, if P. is perman-

ently blocked at q via a ., then q is not necessarily a dead-

lock state (see HC1, page 35). Thus, a data-sharing scheduler which

does not allow permanent blocking does not have a deadlock state, but

a scheduler which has no deadlock state may still allow permanent

blocking.

The object of this section is to characterize "unrestricted"

data-sharing schedulers which do not have deadlock states. A con-

jectural characterization might be that data-sharing schedulers which

have no prior knowledge of the running processes' needs and which do

19

not have deadlock states either do not share the data base or they do

not preserve the integrity of the data base, in the sense of HC1.

This conjecture is in fact true, if the concepts involved are taken

to be as we define them below.

To formalize the idea of "prior knowledge," we introduce the

2
concept of an unrestricted data-sharing scheduler. A data-sharing

scheduler M is unrestricted if for every state q and every

a,, e A, A(q, a..) = error implies that P. has access to s. at
ij ij i j

q via some request a" e A... Loosely speaking, M is unrestricted

if no request by a process P is illegal except (possibly) a request

for a datum to which P already has access.

3
We will call M a trivial data-sharing scheduler if one or

both of the following conditions hold:

(1) for every state q and every pair (P , s) and
1 Jl

(P. , s.) of P x C where i # i„, P has access to
12 J2 •"• 1

s at q implies that P does not have access to s.
jl i2 22

at q;

(2) |c|4 < 1.

2
This term is not to be confused with the term "nonrestricted sequential
machine," (see, for example, (2)) a synonym for "complete sequential
machine."

3
Not to be confused with a trivial finite-state machine (2).

4, |
|X| means the cardinality of X; i.e., the number of elements of X.

20

M is nontrivial if it is not trivial; that is, M is nontrivial if

and only if | c] > 1 and there is a state q, processes P and
1

P. where i.. ^ i„, and data s and s , both in C, such
X2 X l 31 J2

that P. has access to s. at q and ?s has access to Sj
h jl ±2 J2

at q. Intuitively, a data-sharing scheduler is trivial if it "shares"

data by allowing only one process at a time access to C, the critical

subset of the data set S^.

We say that M shares a datum if there is a state q, processes

P and P , and a datum s € C such that P and P have
h *2 J il i2

access to s at q. This formalization relates to integrity of the

data base in the following way: in the case that M shares a datum s
J

and s should not be shared (consider two .processes simultaneously

using s. in write-mode as in HC1), then integrity of the data base

will, in general, be destroyed. Thus, "sharing a datum" is a restricted

converse of the concept of integrity of the data base.

We are now ready to state the conjectural characterization given

above in rigorous terms and to prove its validity.

Basic Theorem: An unrestricted, nontrivial data-sharing scheduler M

has a deadlock state or shares a datum. ->

Proof: Suppose M does not share a datum. Pick a state q such

that processes P. and P. have access to s. and s.
il x2 Jl J2

(respectively) at q, where s and s. are elements of
jl 22

C: such a choice is possible since M is nontrivial. Fur-

thermore, j.. t j„ since M does not share a datum. Let J

5Recall that a data-sharing scheduler has been defined to be a complete
sequential machine.

21

be the tape a . • a . . Clearly J is a legal tape, and
11J2 12J1

X(q, J) = D(a. .) ' D(a .) since M does not share a
1J2 2J1

datum. Now P is waiting for s and P. is waiting
ll J2 2

for s. at 6(q, J). In addition, P has access to s,
Jl lt Jt

at 6(q, J) , t = 1, 2. Thus, <5(q, J) is a deadlock state

and the theorem is proved.

This theorem is the principal result of this paper. Its impli-

cations will be discussed in the next section.

22

SECTION VI

IMPLICATIONS OF THE THEOREM

The Basic Theorem shows the relation between deadlock and integrity

of the data base in an unrestricted nontrivial scheduler: either dead-

lock or simultaneous access for some s. e C must be allowed. Hence,
J -

an unrestricted, nontrivial scheduler which protects the integrity of

the data base has a deadlock state. On the other hand, an unrestricted,

nontrivial, deadlock-free scheduler cannot guarantee integrity of the

data base unless _C = <f) (that is, unless there is no critical set of

data). In case the system being considered uses the strategy of rep-

lication of a datum s. whenever s. must be shared, we consider
J 3

this to be a case of "M shares a datum." In practice, such a strategy

is costly and causes great difficulty (see, for example, the discussion

by Gray(4)).

We assume for the remainder of this section that we are dealing

with a system wherein C 4 <j>.

If integrity of the data base and a guarantee against deadlock

are necessary, then at least one of the conditions "unrestricted"

and "nontrivial" must be weakened. Weakening "nontrivial" leaves a

trivial scheduler, where at most one process at a time has access to

the entire critical set of data. Weakening "unrestricted" means

allowing for the possibility that some requests (besides those for

data already accessed) are forbidden. In a practical situation, then,

23

a user of a shared data base must have a set of guidelines to tell him

what data he can attempt to access. This set of guidelines could vary

dynamically or could remain static. If it remains static, then

obvious alternatives are that either the user stated his own limits

when he began his run (as in the model of HC1), or the system defined

his limits for him, perhaps for that particular run only or because

the user has associated with him some access set which is invariant.

If the guidelines vary dynamically (i.e., during a run), the system

could decide to vary them on its own initiative or the user could

request an alteration of his guidelines using a new set of request

signals.^

The models of HC1 do allow a user to alter his guidelines, but only
by reducing his claim lists. Increasing the claim list is presently
a nonexistent option in those models.

24

APPENDIX

A SUMMARY OF COMPLETE SEQUENTIAL MACHINES

A complete sequential machine^ is a 5-tuple M = (K, E, A, X, 6)

where

K is a nonempty finite set of "states,"

I is a nonempty finite set of "inputs,"

A is a nonempty finite set of "outputs,"

A is a function from K x E into A, and

6 is a function from K x £ into K.

The function 6 is called the "next-state" function and A the "output"

function. Elements of K will be denoted q or q and elements of E

will be denoted I or I . The machine is called "complete" because

both A and 6 are defined for every pair (q, I) in K x Z.

A complete sequential machine M can be thought of as a

processor: when in a given state q, an input I causes M to change

its state to the state specified by the next-state function (that

is, to 6(q, I)) and to emit the output A(q, I). From the next

state 6(q, I), another input will cause a similar action by the

machine M.

A tape of length k, where k_> 0, is a (possibly empty) sequence

1 k
of inputs I , . . . , I . We extend the definitions of A and 6 so

'The material in this section is found in (2, 3). A similar concept
of machine is presented in HC1 to model a process.

25

1 k
that if M is in state q, <$(q, I ... I) is the state of M after

1 k
the sequence of inputs I , . . . , I has been processed by M and

1 k
A(q, I ... I) is the sequence of outputs produced when M has

Ik 1
processed the tape I . . . I . For example, if X(q, I) = 1 and

X(6(q, I1), I2) = 3, then 6(q, I1!2) = 6(6(q, I1), I2) and

1 2
A(q, I I) is the sequence 1, 3.

26

REFERENCES

1. D. E. Bell, "Harmonious Cooperation of Processes Operating on a
Common Set of Data, Part 2," MTR 2254, Vol. II, The MITRE Corpora-
tion, Bedford, Massachusetts, 9 March 1972. ESD-TR-72-147, Vol. 2,

2. A. Gill, Introduction to the Theory of Finite-State Machines,
New York, McGraw-Hill Book Company, Inc., 1962.

3. S. Ginsburg, An Introduction to Mathematical Machine Theory,
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc.,
1962.

4. J. Gray, "Locking" in the Record of the Project MAC Conference
on Concurrent Systems and Parallel Computations, Association for
Computing Machinery, 1970.

5. R. C. Holt, "Comments on Prevention of System Deadlocks," Com-
munications of the Association for Computing Machinery, XIV,
1971, 36-38.

6. L. J. LaPadula, "Harmonious Cooperation of Processes Operating
on a Common Set of Data, Part 1," MTR 2254, Vol. I, The MITRE
Corporation, Bedford, Massachusetts, 1972. ESD-TR-72-147, Vol. 1.

7. B. L. Osofsky, "A Generalization of Quasi-Frobenius Rings,"
Journal of Algebra, 4, 1966, 373-387.

27

S^jntyClaaaih^^on

DOCUMENT CONTROL DATA R&D
(Security rlat $1 llcatlon ol till*, body of abstract and Indauinf annotation mull ba aniarad whan lha »wct|) report I, dataIliad)

l ORIGINATING »C TI vi TV (Corporate author)

The MITRE Corporation
P.O. Box 208
Bedford, Mass.

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
26. GROUP

3 REPORT TITLE

HARMONIOUS COOPERATION OF PROCESSES OPERATING ON A COMMON SET
OF DATA, PART 3

4 DESCRIPTIVE NOTES (Typa ol report and inclusive dataa)

8 AUTHORISI (Ftrtt nim, middle miliml. Immt name)

L. J. LaPadula
D.E. Bell

6 MCPORT DATE

DECEMBER 1972
7R. TOTAL NO. OP PAGES

32
76. NO. OF REFS

7
•a. CONTRACT OR GRANT NO

F19(628)-71-C-0002
6. PROJEC T NO.

671A

d.

•a. ORIGINATOR'S REPORT NUMBERIS)

ESD-TR-72-147, Vol. 3

»r>. OTHER REPORT NOIil (Any other numbara that may ba aaalfnad
Ml/a report)

MTR-2254, Vol. Ill
10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command & Management Systems
Electronic Systems Division (AFSC)
L. G. Hanscom Field, Bedford, Mass. 01730

13. ABSTRAC T

A data-sharing scheduler is defined in terms of finite-state machine theory. Using the
language and concepts of finite-state machines, we give precise definitions for the notions
of "delayed, " "blocked, " "deadlock, " "permanent blocking, " and "sharing a datum"; these
notions and their interrelationships lead to a characterization of a class of scheduler
(unrestricted and nontrivial); a basic theorem of data sharing is stated and proved, and its
implications are explored. We also give a narrative summary and discussion of the main
result of the work suitable for the system designer or analyst.

DD,FN°ORVM473
Security Classification

Security Classification

Key WORDS
ROLE »T IOLI WT

DATA SHARING

DEADLOCK

FINITE-STATE MACHINES

PERMANENT BLOCKING

Security Classification

